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Abstract
We study the dispersion and electric field distributions of magneto-plasmon polaritons
propagating in thin films of conductors separated by a thin insulating dielectric film. The
system supports guided modes, which exist at frequencies and wavenumbers generally
forbidden; the coupled surface plasmon polaritons of the system exhibit propagation which is
non-reciprocal with the application of a transverse DC magnetic field. The forbidden guided
modes are symmetric with respect to propagation direction, and therefore the combinations of
effects offer interesting device application possibilities.

1. Introduction

The study of plasmons in coupled systems, thin films and
superlattices has been a subject of great interest for many
years [1–7]. Recently, advances in nanofabrication and
processing of metal and semiconductor materials has lead
to renewed interest in plasmons, plasmon polaritons (PPs)
and other related collective charge and spin excitations. In
particular, there has been interest in signal transmission,
routing and coupling [8, 9]. In addition, there has been
considerable work investigating the properties of polariton
waveguide principles and device applications, including the
enhancement of light transmission through metal films with
nanostructured apertures [10], manipulation of optical couplers
via surface PPs on microstructured wire arrays [11], and other
thin film and photonic bandgap devices [12, 13]. The existence
of guided-wave polariton modes has also been established
for thin metal films [14] and active control mechanisms for
coupling low-frequency PPs on semiconductors have been
proposed [15], as well as other important effects including
negative refraction [16–18], nonlinear (harmonic generation)
effects [19, 20] and plasmonic solutions [21].

In this paper, we will focus on the fundamental
properties of PPs on thin films of conducting material
coupled by thin dielectric films, under a transverse DC
magnetic field; the system supports an interesting array of
PP modes, including collective surface modes and guided-
wave modes [22]. Collective-mode PPs on layered structures
provide the opportunity to tailor the dispersion properties of

the excitations; studies of collective modes on superlattices
have produced many interesting results [1]. The main idea is
that plasmon polaritons localized at the boundary between a
conductor and an insulator produce fields which extend into
the dielectric and which can couple to an adjacent conducting
surface. For an array of thin films, the surface waves thus
couple to produce collective modes of the whole structure,
the properties of which depend upon the overall geometry and
intrinsic material properties of the structure.

The addition of a transverse DC magnetic field can have
significant impact on the properties of PP modes [1]. The
field gives rise to a ‘handedness’ for the plasma oscillations of
the conductor, thereby lowering the symmetry of the overall
structure. In particular, surface waves in coupled systems
can become non-reciprocal [23]—the propagation frequency
for modes with wavevector �k can differ from that of modes
with wavevector −�k. Therefore, for device applications,
modes traveling in opposite directions become decoupled, and
signals of a given wavelength can pass in opposite directions
independently. In this paper, we investigate the non-reciprocal
behavior of surface PPs, as well as the effects of transverse
magnetic fields on the forbidden guided-wave PP modes.

The two-film/dielectric system studied here supports a
wide array of ‘forbidden’ guided PP modes, depending
upon the geometry and material properties (i.e. the overall
symmetry) of the constituent films [16]. Ordinary PP collective
modes are composed of coupled waves localized at each
conductor/insulator interface; in contrast, the forbidden modes
are composed of waves largely in the interior dielectric
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between the conducting films. The dispersion of these guided
modes forms a ‘ladder’ of allowed modes, always within a
region of the dispersion space ‘left’ of the light line on graphs
of frequency versus wavevector, i.e. for ck < ω.

The main result of the current work is that, while the
collective surface-wave PPs become highly non-reciprocal
with applied DC magnetic field, the forbidden guided modes
remain symmetrical with respect to propagation direction.
The non-reciprocal propagation of the surface PPs depends
strongly on the structural symmetry of the system; a simple
symmetry argument provides a clue to this behavior: for a
given configuration of propagation vector, structure geometry
and magnetic field, if a set of symmetry operations can take
�k to −�k and leave the rest of the system unchanged, then
the propagation must be reciprocal. If the operations leave
the system in a different configuration, then the propagation
may be non-reciprocal. Since the guided-wave modes have a
different character from the pure surface-constructed modes—
they are not composed of coupled surface waves that exist on
the individual film surfaces and thus do not exist when the films
are widely separated—the argument does not apply.

The main result has important device application
possibilities, as signal processing may be accomplished via the
surface-wave PPs as well as the guided-wave modes. It has
been shown that couplers and/or surface-wave probes (such
as ATR) can be used to drive and detect the PP modes; the
possibilities proposed here are rich, since the application of
the magnetic field can decouple (in frequency) surface waves
traveling in opposite directions, while at the same time leaving
the guided-wave modes unchanged; in addition, the application
of even modest magnetic fields can change the localization of
coupled surface waves, and thus give rise to possible switching
mechanisms.

The rest of this paper is organized as follows. In section 2
we outline the theory for modeling PPs in a thin-film system.
In section 3 we present numerical studies of the PP dispersion
and electric field distributions for a variety of model structures,
and in section 4 we present a brief summary of the main results.

2. Theory

In this section, we present an outline of the theoretical methods
for calculating allowed plasmon polariton excitations in a
coupled thin-film system. We consider the geometry depicted
in figure 1; the system consists of two conducting films (films
labeled 2 and 4 in the figure), separated by an insulating
spacer, with the bottom conductor resting on a semi-infinite
substrate. The system is considered infinite in the x–z plane,
and regions of different material are numbered accordingly.
The thicknesses and dielectric constants of regions indexed by
integer n are given by dn and εn, respectively. In the interest
of completeness, we will initially assume that all dielectric
constants are frequency-dependent.

The first step in finding the collective-mode dispersion
relation for the structure of figure 1 is to solve the
electromagnetic wave equation appropriate to each region,
and match the solutions across regions using the appropriate
boundary conditions. For brevity, we will focus on p-polarized
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Figure 1. The geometry considered in this paper. The different
layers of material are labeled, along with their thickness. The
conducting layers are labeled 2 and 4.

plasmon polariton modes. We first write the general wave
equation (with μ = 1 everywhere)

∇ × ∇ × �E = − 1

c2

∂2 �D
∂ t2

. (2.1)

In the absence of a magnetic field, solving the wave equation
would be a matter of assuming plane-wave-like solutions
in each region, ei(�k·�r−ωt) (where �k and ω are the polariton
propagation vector and frequency, respectively), and given
linear isotropic media, the constitutive relation �D = ε↔ �E would
immediately give a simple two-component wave equation in
terms of the electric field vector alone (two-component because
we note that �k · ẑ = 0 for p-polarized modes). With the
application of a static magnetic field along the z axis in figure 1,
the constitutive relation is more complex. In this case, the
dielectric tensor appropriate for region n is given by

εn =
[

εna −iεnb

iεnb εna

]
(2.2)

where the components are, explicitly,

εna = ε∞n

(
1 + ω2

pn

ω2
cn − ω2

)

εnb = ε∞n

(
ωcnω

2
pn

ω
(
ω2

cn − ω2
)
) (2.3)

and, for region n, ε∞n is the background dielectric constant,
ωpn is the plasma frequency and ωcn = eB/m∗

nc is the
cyclotron frequency, with B the magnetic field strength and
m∗

n the appropriate effective mass. We have assumed negligible
damping. In this case, we can write the wave equations (2.1)
appropriate to each region as

[
ω2

0εna − k2
ny iω2

0εnb + kxkny

−iω2
0εnb + kx kny ω2

0εna − k2
x

] [
Enx

Eny

]
= 0 (2.4)

where ω0 = ω/c, and we note that the parallel component
of the wavevector kx is conserved, and is therefore the same
in each layer and does not require an index. In order
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that (2.4) yield linearly independent solutions, the determinant
of the coefficient matrix must vanish, so that the wavevector
components are related by

k2
ny = ω2

0

(
εna − ε2

nb

εna

)
− k2

x . (2.5)

Equations (2.4) and (2.5) may now be combined, so that the
field amplitudes in the two axes can be related to one another;
the point is to utilize the continuity of the component of the
electric field parallel to the interfaces to write the general
electric field in a useful manner. Equations (2.4) and (2.5) yield
the relation

Eny = −
(

εnak2
x + (ω0εnb)

2

εna
(
kx kny − iω2

0εnb
)
)

Enx . (2.6)

The general solution for the electric field vector in a given
region can be written as a superposition of waves traveling in
the +y and −y directions; taking advantage of equation (2.6),
and denoting the tangential amplitudes of the plus and minus
traveling waves as An and Bn, respectively, we have

En =
[

x̂
−α−

n ŷ

]
Anei(kx x+kny y−ωt)+

[
x̂

α+
n ŷ

]
Bnei(kx x−kny y−ωt),

(2.7)
where

α∓
n = εnak2

x + (ω0εnb)
2

εna
(
kxkny ∓ iω2

0εnb
) (2.8)

comes from equations (2.6), with all kny taken to be
positive. At this point, we can assemble the coupled system
by matching the appropriate boundary conditions at each
interface. Matching the tangential components of �E and the
normal components of �D at each boundary yields the following
matrix equation:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 −1 0 0
R1 −Q2 −R2 0 0
0 eik2y d2 e−ik2y d2 −1 −1
0 Q2eik2y d2 R2e−ik2y d2 −Q3 −R3

0 0 0 eik3y d3 e−ik3y d3

0 0 0 Q3eik3y d3 R3e−ik3y d3

0 0 0 0 0
0 0 0 0 0

0 0 0
0 0 0
0 0 0
0 0 0

−1 −1 0
−Q4 −R4 0
eik4y d4 e−ik4y d4 −1

Q4eik4y d4 R4e−ik4y d4 −Q5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B1

A2

B2

A3

B3

A4

B4

A5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0, (2.9)

where Qn = iεnb − α−
n εna and Rn = iεnb + α+

n εna. Given
the system of equations (2.9), the PP dispersion relations
can be calculated by choosing a value for kx , and then
solving for the value of ω which causes the determinant of
the coefficient matrix in (2.9) to vanish. Furthermore, the
tangential components of the electric field amplitudes are
computed by inserting the appropriate values for �k and ω,

and solving (2.9) for the amplitudes An in terms of the first
amplitude B1.

In the next section, we will solve the system of
equations (2.9) numerically for a variety of situations.

3. Numerical examples

In this section, we perform and analyze numerical studies
of the formalism introduced in the previous section. The
geometry in all cases is assumed to be that depicted in figure 1,
with the magnetic field into the plane of the figure; the two
free-charge layers (layer 2 and layer 4) are assumed to be
doped GaAs films separated by and surrounded by insulating
dielectrics. The dielectric function for the GaAs layers is given
by equations (2.3), with a static-limit dielectric constant of
ε∞ = 13.13. The film thicknesses are given by t2 = t4 =
t = 0.57c/ωp and t3 = 5t . The main goal of this section
will be to demonstrate the effects of the magnetic fields on
the plasmon polariton spectrum, and the material parameters
will be chosen to best represent the major effects. In what
follows all units will be scaled: unitless frequency is given
by � = ω/ωp and unitless wavevector by K‖ = ckx/ωp.
The purpose of the scaling is to render the results general;
the plasma frequency depends on the actual doping levels of
the active layers (as well as the signs of the free carriers), and
possibilities range across the infrared, assuming typical carrier
densities from 1017 to 1020 cm−3. Therefore, by controlling
doping levels, the systems described in this section can be
accessible to appropriate sources and detectors.

Some general features of PPs are as follows: in all cases
presented here, the PP modes break roughly into two types,
characterized by the vertical component of the wavevector,
ky . For pure real ky , the solutions are wavelike inside a
given layer, while for pure imaginary ky , the modes in a given
layer are surface waves which decay exponentially into the
material. The condition for surface polaritons in a given region
is given by equation (2.5), i.e. k2

x > ε(ω/c)2, or, for conducting

(doped) layers, ω <
√

c2k2
x/ε∞ + ω2

p and for insulating layers,

ω < ckx/ε. These relations mark the boundaries of the
‘bulk modes’ and the ‘light line,’ respectively, within a given
material.

In figure 2, we show the dispersion relations for a system
with perfect reflection symmetry about the midplane: here
the spaces above, below, and between the two GaAs layers
are assumed to be vacuum (ε = 1). For completeness, we
show both positive and negative values of K‖, even though the
high-symmetry forces the dispersion to be reciprocal. Note
the bulk-mode boundaries and light line denoted by dashed
lines in the figure. The solid lines to the right of the light
lines are the allowed surface-constructed PP modes, and the
mode penetrating into the ‘forbidden’ region is a guided-wave
mode—the field amplitudes for all of these modes will be
discussed below. It is important to note that, due to the
midplane-reflection symmetry, the dispersion curves depicted
in figure 2 do not change with applied magnetic field (as
mentioned above); the dispersion shown is reciprocal with
respect to propagation direction and the level frequencies do
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Figure 2. The dispersion curve frequency versus wavenumber (in
reduced units) for the symmetric case given by two GaAs conducting
layers separated and surrounded by vacuum. The dotted lines are the
bulk-mode boundary and the vacuum light line. Note that this curve
is the same for zero magnetic field and for small applied fields, and
that the modes are reciprocal with respect to propagation direction.

not shift much under modest magnetic field. The electric field
amplitudes, however, do respond to modest applied fields.

In figure 3, we show the magnitude of the tangential
electric field components (arbitrary units) as a function of
depth into the structure (in units of t) for three different
polariton modes at zero magnetic field. The boundaries of the
different layers have been included in the figure as a guide
to the eye. The solid and dotted curves represent surface-
constructed modes, with K‖ = 1.5 and � = 0.892, � =
0.977 for each, respectively; these modes are found on the
branches of the dispersion to the right (in wavevector) of the
light line, and thus obey the relationship demanded above
of surface waves. Note that, for each of these modes, the
electric fields are localized to the boundary surfaces and decay
exponentially into the material. The dashed curve is for the
forbidden guided mode, with K‖ = 0.5 and � = 0.854,
which is also constructed of surface waves, but which takes
the form of a ‘standing’ wave resulting from the coupling of
the two active layers. In the large-t3 limit (i.e. t3 → ∞),
the system reverts to two uncoupled single-film structures,
where the guided-wave mode does not exist, and the other
surface modes merge and converge to the single-film polariton
dispersion. The guided-wave mode arises as one of the high-
frequency single-film surface modes and is a result purely of
the coupling between the films. The coupling splits the single-
film modes, and the high-energy surface mode pair produces
the GWM. (For a discussion of the details of isolated structures
versus the distance dependence of the coupled electromagnetic
modes of layered structures, see [24].) Note the overall
symmetry of all modes, mimicking the reflection symmetry
of the structure, both in terms of the geometric and the
electromagnetic symmetry; note that the phase information
for the waves is lost when taking the absolute magnitude, so
the odd–even symmetries are also lost (hard zeros represent π

phase shifts). For instance, the solid curves represent an odd-
symmetry mode about the midplane.

Figure 3. The electric field amplitudes as a function of depth into the
structure for selected plasmon polariton modes from figure 2, with no
applied magnetic field. The layer boundaries are included for clarity.
The modes here are given by the ordered pair (K‖,�) as follows:
(1.5, 0.892) solid curve; (1.5, 0.977) dotted curve; (0.5, 0.854) for the
dashed curve. Note the reflection symmetry about the structure
midplane.

Figure 4. The electric field amplitudes for the same modes as those
in figure 3, except here the magnetic field is given by �c = 0.05.
Note that the surface-constructed modes are localized more strongly
on the bottom conductor, while the guided-wave mode (dashed
curve) remains peaked at the midplane.

In contrast, figure 4 shows the same modes as those in
figure 3, but with an applied parallel magnetic field given by
�c = ωc/ωp = 0.05. Here there is no appreciable shift in the
dispersion relations, but the lowering of the electromagnetic
symmetry starts to localize the surface modes. Note that the
solid curve and the dotted curve begin to show localization
towards the bottom, with the solid curve localized at the
bottom surface while the dotted curve is localized on the inner
boundary of the bottom GaAs layer. Remarkably, however,
there is almost no change at all for the field amplitudes of the
guided-wave mode (dashed curve). This is a major feature
of the current system; the symmetry lowering effects of the
magnetic field do not appreciably affect the guided modes, due
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Figure 5. The electric field amplitudes for the same modes as
figure 3, under a magnetic field given by �c = 0.5. Note the strong
localization of the surface-constructed modes and the relative
insensitivity of the guided-wave mode.

to the change in character of the GWM from pure surface-
constructed to bulk-like.

In figure 5, the same modes as those in figure 4 are shown,
but this time at a higher magnetic field: �c = 0.5. In this case,
the dispersion has shifted slightly with respect to the zero-field
case (but the entire dispersion remains reciprocal with respect
to K‖ → −K‖); for the solid curve K‖ = 1.5,� = 0.723,
for the dotted curve K‖ = 1.5,� = 0.842 and for the dashed
curve K‖ = 0.5,� = 0.826. Note that the applied field has
localized the higher-energy mode completely to the bottom
surface; the lower-energy surface mode is still localized on
the bottom surface but also still has appreciable amplitude and
symmetry. The guided mode is shifted slightly towards the
bottom surface; however, the peak amplitude remains at the
midpoint of the gap separating the doped layers.

The more interesting cases involve the lowering of the
structure symmetry prior to the application of the magnetic
field; in this way, there is no reflection symmetry about the
midplane, and therefore the symmetry operations that take
K‖ → −K‖ involve operations that do not leave the system
(including applied magnetic field) unchanged. In figure 6 we
show the zero magnetic field dispersion curves for the case
ε1 = 1, ε3 = 11.7, ε5 = 13.13. These are the values
appropriate for a trial system consisting of doped GaAs on
an insulating GaAs substrate, separated from another doped
layer by a layer of silicon, with vacuum above. As mentioned
in previous work [22], this system represents a physically
realizable system that is ideal for creating a ‘ladder’ of guided-
wave modes; the large substrate dielectric has a light line well
away from that of vacuum, and thus pulls the long-wavelength
(small wavevector) surface polaritons away for the vacuum
light line, creating a large parameter space for the guided-
wave modes to propagate [22]. In figure 6, we see the three
light lines, one for vacuum, one for Si and one for GaAs, as
well as the ladder of three distinct guided-wave modes. The
zero magnetic field system is reciprocal with respect to K‖,
so only one side of the dispersion is shown. Because the
dielectric layers have three different dielectric constants, this

Figure 6. The zero magnetic field dispersion curves for the model
system given by two doped layers of GaAs, separated by an Si layer,
resting on an undoped GaAs substrate. Once again, the dashed and
dotted lines are the light line and bulk-mode boundary, respectively.
Note the ladder of guided-wave modes that exists inside the vacuum
light line, as explained in the text.

Figure 7. Electric field amplitudes for selected modes from figure 6.
The modes are given by (1.6, 0.957) solid curve; (2.0, 0.453) dotted
curve; (0.4, 0.788) dashed curve. Note the surface-constructed modes
are localized by the lower dielectric symmetry.

system represents the lowest possible structural symmetry, and
we expect the magnetic field to produce highly non-reciprocal
surface polaritons. In addition, we note that the guided-
wave modes evolve out of the bulk-mode edge, and from the
highest-energy surface mode. The evolution is interesting, in
that the modes undergo several anti-crossings as a function of
wavevector.

For the zero-field case of figure 6, we expect that the
low electromagnetic symmetry will compel each surface-
constructed polariton mode to be localized to a different
surface. In figure 7, we show the electric field amplitudes for
modes from different regions of the dispersion curves. The
solid line is for the mode at K‖ = 1.6,� = 0.957, inside
the semiconductor light lines and inside of the anti-crossing

5



J. Phys.: Condens. Matter 20 (2008) 335217 B L Johnson and H-H Shiau

0

0.2

0.4

0.6

0.8

1

Ω

K
||

Figure 8. The dispersion curves for the GaAs–Si system of figure 6,
under a small applied field given by �c = 0.05. Note the
non-reciprocal (different allowed frequency for change in wavevector
sign) modes indicated by the arrows. The guided-wave modes remain
reciprocal with respect to propagation direction.

in the highest-energy surface-constructed mode. Note that this
mode is entirely localized at the top interface, bounding the
top active GaAs layer with the vacuum. This is the character
of the mode throughout, starting from the region K‖ > 3.5.
The dotted mode is given by K‖ = 2.0,� = 0.453, which
is the uppermost of the triplet of modes to the right of the
semiconductor light lines—it is also the mode that evolves
into the low-energy guided-wave mode in the forbidden region.
Note that this mode is localized to the bottom boundary,
between the bottom active GaAs layer and the Ga As substrate.
The dashed mode is the highest-energy guided-wave mode in
the forbidden region left of the vacuum light line, at K‖ =
0.4,� = 0.788. Here the number order of the mode (in
frequency) coincides with the number of peaks that exist in the
Si gap; this mode has three peaks, etc.

We now turn to the effect of applied magnetic field to
the low-symmetry structure. Figure 8 shows the dispersion
curves appropriate to the Si–GaAs system, for both signs of
K‖, under a small applied magnetic field given by �c = 0.05.
Even with the modest applied field, the surface-constructed
PP modes are highly non-reciprocal: note the splitting of the
triplet of low-energy surface waves, depicted by the arrows
in the figure; however, it is very interesting to note that the
energies of the guided-wave modes are not sensitive to the
applied field and remain reciprocal. This is due to the different
mode character, i.e. the bulk-like nature of the GWM, and thus
the electromagnetic symmetry arguments for the surface waves
do not apply.

In figure 9, we track the changes in the electric field
amplitudes for the same modes as those in figure 7, but now the
effect of the small magnetic field is studied. The solid curve,
given by K‖ = 1.6,� = 0.971, has reversed its localization,
and now, remarkably, is localized to the bottom surface.
This behavior is the result of modes changing character after
an anti-crossing: Note that in figure 6 the horizontal high-
frequency surface mode passes through several anti-crossings

0

0.2

0.4

0.6

0.8

1

|E
x|

Depth

Figure 9. The electric field amplitudes corresponding to the same
modes as those in figure 7, but with the small applied magnetic field
�c = 0.05. Note that the mode previously localized at the upper
boundary surface (solid curve) is now localized to the lower
boundary surface.

Figure 10. The dispersion curves for the GaAs–Si system of figure 6,
but under a magnetic field given by �c = 0.5. Note the pronounced
non-reciprocity for the surface waves indicated by the arrows, while
the guided-wave ladder remains reciprocal.

(the splitting caused by the coupling of the layers requires
the anti-crossings, see [22]); the actual mode changes, but the
character of the mode does not. With the applied magnetic
field, the character inversion can occur as the anti-crossing is
shifted. The reversion behavior may have important device
applications, as detecting the mode by surface-sensitive means
such as attenuated total reflection will show a switching effect
with the application of small magnetic field for this (constant-
frequency) mode. The dotted curve, now given by K‖ =
2.0,� = 0.449, is relatively insensitive to the small applied
field, as is the guided-wave mode—the dashed curve in the
figure with K‖ = 0.4,� = 0.788 (exactly the same dispersion
frequency as the zero-field mode).

In figure 10, the dispersion for the same Si–GaAs system
under a higher field, given by �c = 0.5, is shown. The
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Figure 11. The electric field amplitudes for the GaAs–Si structure
under a magnetic field of �c = 0.5. The single surface-constructed
mode is strongly localized (dotted curve), while the other surface
mode has changed character to bulk-like behavior (solid curve).
Again, the guided-wave mode (dashed curve) is not sensitive to the
magnetic field.

major features to note here are the very strong non-reciprocal
behavior of the middle surface-constructed mode (shown by
arrows) and the now pronounced downward shift in frequency
for the three guided-wave modes—which are still reciprocal
with respect to propagation direction. The uppermost mode (in
frequency) between the vacuum and semiconductor light lines
is also highly non-reciprocal, and has changed its character
considerably.

To see the character change in what was, with no applied
magnetic field, a top-surface localized mode, we show again
the same three electric field distributions for the high-field case
in figure 11. The solid curve, with K‖ = 1.6,� = 0.996, is
clearly evolving into bulk-mode behavior—it has been shifted
such that, although it still has solutions applicable for the
surface mode states discussed above, its character is that of
a bulk mode, localized inside the active layer. In contrast, the
dotted curve, with K‖ = 2.0,� = 0.383, remains relatively
insensitive to the magnetic field and is still localized entirely
to the bottom surface of the bottom active layer. Perhaps
most remarkably, the guided-wave mode (K‖ = 0.4,� =
0.744) still remains almost entirely unchanged; the guided
modes remain reciprocal and their electric field distribution is
independent of the applied field.

From the point of view of device physics, the structure
described here has remarkable possibilities; the non-reciprocal
surface waves provide the basis for signal process in which
signals propagating on the structure in opposite directions
have different frequencies, the basis for a directional switch.
Moreover, the guided-wave modes, which are reciprocal and
whose localization character is unaffected by the magnetic
field, provide a ‘baseline’ signal processing mode and,
as mentioned above, the fact that the upper-surface mode
undergoes a dramatic ‘switching’ effect with the application
of very small magnetic fields represents another basic signal
processing application.

Figure 12. A plot of allowed frequency versus applied magnetic field
(reduced units) for modes at fixed ±K‖. For the modes starting at
high frequency (corresponding to guided-wave modes), the curves
are for K‖ = ±0.4 solid and dashed, respectively, while for the
lower-frequency (surface) modes K‖ = ±3.6 dotted and solid curves,
respectively. Note the marked non-reciprocity for the surface modes,
and the relative insensitivity for the guided-wave modes.

To illustrate the magnitude of the non-reciprocal behavior
as a function of applied magnetic field, figure 12 shows the
allowed frequencies at different wavevectors, plotted as a
function of �c. The upper lines are for K‖ = ±0.4, solid
and dashed, respectively, while the lower-frequency curves are
for K‖ = ±3.6, dotted and solid lines, respectively. The
figure illustrates the dramatic non-reciprocity of the surface-
constructed modes (lower curves) and the relative insensitivity
of the guided-wave modes (upper curves) as a function of
applied field.

4. Summary

In this paper, we have derived the dispersion and electric field
amplitudes for plasmon polaritons propagating on coupled
thin-film structures under a magnetic field applied parallel
to the film interfaces. The primary purpose of the paper is
to illustrate the effect of an applied DC magnetic field on
the surface-constructed plasmon polariton modes as well as
on the interesting modes that exist in the parameter space
forbidden to single-mode (uncoupled) surface polariton waves.
We find that the coupled surface-constructed polariton modes
are highly non-reciprocal with respect to propagation direction,
but that the guided-wave modes are almost entirely insensitive
to applied field. In addition, the surface-constructed modes
localized at the top surface of the bi-layer structure switch
character, and are localized to the bottom surface with the
application of very small magnetic fields. All of these
effects have potentially important signal processing device
applications.
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